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Abstract7

Single-cell RNA sequencing (scRNA-seq) enables high-resolution analysis of cellular heterogeneity,8

but traditional cell isolation methods like flow cytometry and laser microdissection often suffer from9

limitations in efficiency, viability, and bias. To overcome these challenges, computational tissue deconvo-10

lution approaches have emerged as effective alternatives. In this work, we introduce a high-performance11

computational pipeline for scRNA-seq data analysis that identifies and segregates cell populations12

based on marker gene expression. Our method incorporates advanced preprocessing, normalization,13

and clustering techniques, optimized for scalability and reproducibility in high-performance computing14

(HPC) environments. Compared to related tools, our pipeline offers enhanced adaptability across15

diverse datasets and experimental settings. We validated its performance using zebrafish ventricular16

tissue post-injury, effectively identifying key regenerative cell types such as immune cells, including17

macrophages. This approach supports in-depth biological discovery without prior physical cell separa-18

tion and expands the potential of scRNA-seq applications in regenerative biology, immunology, and19

single-cell transcriptomics.20

1 Introduction21

Single-cell RNA sequencing (scRNA-seq) has revolutionized cellular biology by enabling high-resolution22

characterization of cellular heterogeneity across a wide range of tissues and physiopathological conditions[2,23

11, 12]. This technology facilitates the identification of distinct cell populations, their gene expression24

profiles, and functional states, thereby offering critical insights into complex biological processes such as25

development, immune response, and tissue regeneration[1, 25].26

Traditionally, the separation of specific cell types within a tissue relies on experimental methods such27

as optimized centrifugation protocols, flow cytometry, or laser microdissection. However, these techniques28

often present limitations related to efficiency, cell viability, and potential experimental bias[16, 30, 19].29

Moreover, the reliance on precharacterized markers for cell identification may hinder the discovery of novel30

or rare cellular states. In this context, computational approaches for the deconvolution of whole-tissue31

transcriptomic profiles have emerged as powerful alternatives, enabling the extraction of biologically32

meaningful information without requiring prior physical cell separation[21, 4, 18, 27].33

In this study, we introduce an advanced computational pipeline for scRNA-seq analysis, designed to34

enable the targeted separation of cell populations based on the expression of known marker genes. Our35

pipeline integrates robust pre-processing protocols (including SCTransform normalization[8]), advanced36

batch-correction methods (such as Harmony[12] and Seurat integration[24]), and state-of-the-art clustering37

algorithms (Leiden and Louvain) to ensure accurate identification and isolation of relevant cell populations38

from whole-tissue samples. By leveraging previously validated molecular markers, the approach provides39

a comprehensive characterization of cellular heterogeneity and ensures the precise delineation of target40

populations for downstream analyses[23, 28].41
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The pipeline is engineered for high scalability and optimized for execution in high-performance42

computing (HPC) environments, allowing for efficient processing of large-scale transcriptomic datasets.43

Its architecture ensures analytical reproducibility, robustness of results, and adaptability across a variety44

of datasets and experimental contexts[3].45

To the best of our knowledge, this is the first study to implement a marker-based, HPC-compatible46

computational strategy for the targeted separation of cell populations from whole-tissue scRNA-seq data47

without prior physical sorting. This innovative framework enhances analytical resolution while offering48

a practical, scalable alternative for contexts in which conventional separation methods are limited or49

impractical.50

To demonstrate the capabilities of our pipeline, we selected publicly available studies that employed51

scRNA-seq as the primary methodology to investigate cardiac regeneration in adult zebrafish. These52

studies typically feature time-course experimental designs with sampling at key regenerative stages,53

including uninjured controls and post-injury time points at 3, 7, and 14–30 days after injury[9, 14, 15, 20].54

Common analytical focuses include the characterization of non-myocyte populations—such as fibroblasts,55

macrophages, endothelial cells, and epicardial cells—with emphasis on their transcriptional dynamics and56

functional roles during tissue regeneration[5].57

Computational tools such as Seurat[21, 24], Scanpy[28], LIGER[9], and UMAP[17] are consistently58

used across these studies for dimensionality reduction and clustering, enabling the identification of distinct59

cell states and transient activation patterns.60

Key molecular markers examined include proliferation indicators (e.g., mKi67, PCNA)[7], extracellular61

matrix remodeling genes (col12a1a, fn1a)[2], pro-regenerative signaling molecules (e.g., nrg1, aldh1a2 for62

retinoic acid synthesis)[9, 15], and inflammatory response mediators[14]. Furthermore, several studies63

incorporate spatial validation techniques—such as immunohistochemistry and in situ hybridization—to64

align computational findings with anatomical structures, as well as cell–cell interaction analyses to uncover65

coordinated cellular behaviors that underlie successful cardiac regeneration[29].66

Our results demonstrate the superior capacity of the proposed pipeline to separate and characterize67

distinct cell populations in zebrafish cardiac tissue following injury. Temporal analysis of regenerative68

stages revealed dynamic shifts in cell type composition and highlighted the central role of immune cells,69

particularly macrophages, in orchestrating the regenerative response[14]. Additionally, the ability to70

isolate specific cell subsets enabled reduction of computational burden and improved analytical efficiency71

in large-scale datasets[13].72

Beyond the zebrafish model, we validated the pipeline’s generalizability across species and tissue types,73

contingent on the availability of prior knowledge regarding marker genes for the target populations. This74

versatility reinforces the method’s potential applicability across a wide range of biological systems and75

scRNA-seq studies.76

In summary, this work introduces a novel and efficient computational tool for scRNA-seq analysis,77

enabling the exploration of complex tissues without the need for physical cell separation. We anticipate78

that this pipeline will be broadly applicable across diverse research domains, advancing the understanding79

of cellular processes and offering new perspectives in regenerative biology, immunology, and single-cell80

transcriptomics.81

2 Materials and Methods82

The samples analyzed in this study consist of whole tissue preparations processed in a single scRNA-seq83

run, encompassing a heterogeneous mix of cell types. Single-cell transcriptional profiling was performed in84

all major cardiac cell types[5], in association with transgenic animals[18], followed by FACS-sorting cells[20],85

or only in non-cardiomyocytes followed by cardiomyocytes separation through low-speed centrifugation[15].86
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The central analytical objective was to focus on a specific cellular population, previously characterized by87

a well-defined set of gene markers described in the literature.88

Our analysis begins with a gene expression matrix derived from scRNA-seq data, regardless of the89

alignment or quantification algorithm employed (e.g., Cell Ranger[30], STARsolo[10], Salmon[23, 22], or90

Kallisto|bustools[3]). The first step in the pipeline involves normalization of the data using the Centered91

Log-Ratio (CLR) method[6, 26]. CLR transforms each gene’s expression into a ratio relative to the92

geometric mean of expression values within the same cell. This method is particularly suited to scRNA-seq93

data, as it addresses the compositional nature of the dataset, mitigates biases introduced by sequencing94

depth and capture efficiency, and reduces the dominance of highly expressed cell types over less abundant95

but biologically relevant populations. By emphasizing relative expression rather than absolute counts,96

CLR normalization improves the detection of subtle transcriptional variation[26, 19].97

CLRij = log2

(
xij + 1

(
∏n

k=1(xik + 1))1/n

)
(1)

Where:98

• xij are the gene counts j on cell i99

• n is the total number of genes100

Following normalization, cells expressing the canonical markers associated with the target population101

are selected through a subsetting strategy. This step reduces dataset complexity by removing irrelevant102

cells from the analysis and concentrating computational effort on biologically pertinent subsets. This also103

increases sensitivity and statistical power in downstream analyses.104

The original, unfiltered dataset is retained to enable optional comparative analysis across cell pop-105

ulations if required. Once the subset of interest is defined, canonical analytical procedures—such as106

dimensionality reduction, clustering, marker identification, and visualization—are applied, in accordance107

with widely adopted methodologies in the field.108

For validation purposes, reference markers were obtained from the scientific literature and used as a109

baseline for comparison. Marker tables generated through standard workflows (e.g., Seurat’s FindMarkers110

or FindSubClusters functions) [21] were directly compared to those derived from the proposed filtering111

approach. Even when applying advanced clustering refinement techniques, the conventional pipeline proved112

limited in resolving transcriptional states with sufficient granularity, often overlooking low-expression113

markers or intermediate cellular states.114

Additionally, a technical limitation was identified during post-normalization processing. The use of115

primitive floating-point data types (such as float32) introduced numerical precision constraints that affected116

low-abundance transcripts. These values, due to limited decimal representation, were often misclassified117

as noise and discarded during clustering and differential expression analysis. This phenomenon, referred118

to here as signal shadowing, is common in datasets with highly diverse cellular compositions and leads119

to the loss of biologically relevant signals. Furthermore, attempts to mitigate this issue by increasing120

the number of floating-point decimals (e.g., using float64 or higher precision data types) would, in the121

best-case scenario, result in a doubling of memory usage, which is not feasible given current computational122

resource constraints. As such, alternative strategies are required to address the limitations imposed by123

signal shadowing and ensure that low-abundance transcripts are accurately detected and analyzed.124

The proposed approach addresses this issue by introducing a marker-based filtering step prior to125

downstream processing, thereby minimizing early-stage information loss and improving the resolution and126

fidelity of the biological inferences drawn from the data.127
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3 Results128

The results obtained were thoroughly validated against established literature on related studies[14, 18,129

15, 20, 5]. Following the application of our analytical pipeline, we achieved enhanced resolution and130

significantly improved recovery of data related to the target cell populations, as exemplified by the131

distribution shown in Figure 1: the yellow histogram, representing macrophages, displays a more defined132

and concentrated profile of average log2 fold changes (avg_log2FC), in contrast to the broader and more133

dispersed distribution observed in blue, which corresponds to the aggregated signal from all cells. This134

methodological advancement enabled a more granular dissection of cellular heterogeneity, surpassing the135

resolution typically reported in similar analyses.136
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Figure 1: Distribution of average log2 fold change (avg_log2FC) values for genes shared between conditions,
comparing all cell populations (blue) versus macrophages only (yellow). The histogram reveals a narrower
and more sharply peaked distribution for macrophages, indicating a more consistent and pronounced gene
expression response within this specific cell type. In contrast, the broader distribution observed across all
cells reflects greater heterogeneity, likely due to the inclusion of multiple cell populations with varying
transcriptional profiles.

Notably, in the dataset specifically curated for this experiment[14], the data yield was markedly137

elevated, with improvements reaching approximately 26,89%. This substantial gain underscores the138

efficacy of our approach in enhancing the sensitivity and specificity of cell population identification.139

A critical factor contributing to these results was the strategic curation of the dataset-specifically,140

the exclusion of non-relevant cells based on predetermined marker profiles. This filtering step not only141

streamlined the analytical process but also resulted in several computational benefits: increased data142

capture for the cells of interest, reduced overall computational load, and a significant decrease in the143

complexity of extracting biologically relevant information from raw FASTQ files.144
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Figure 2: Venn diagram illustrating the overlap of genes detected in the complete dataset comprising all
cell populations ("All Cells") versus the macrophage-specific subset ("Macrophages"). A total of 870 genes
were commonly detected in both datasets, whereas 2,064 genes were uniquely identified in the global
dataset and 319 genes were exclusively recovered within the macrophage-specific subset. This distribution
underscores the increased resolution and sensitivity achieved through the targeted, marker-guided curation
strategy employed in our analytical pipeline. Notably, the subset-based approach enabled the detection of
macrophage-specific transcripts that would likely remain undetected under conventional whole-sample
analyses, where signal dilution from heterogeneous cell populations often obscures cell-type-restricted
gene expression. These results highlight the methodological advantage of incorporating cell-type-aware
filtering steps in single-cell RNA-seq workflows, allowing for the preservation and analysis of transcriptional
signatures critical to specialized or transient cell states.

Among the genes identified specifically in the dataset where the method was applied, several features145

emerged that were not observed using traditional data curation approaches. These genes were validated146

as essential to macrophage plasticity processes—subtle characteristics that would likely have been missed147

with less stringent analytical criteria. Such findings highlight transient transcriptional states that are only148

detectable when cells are undergoing phenotypic transition.149

Importantly, we highlight the broader implications of our findings in democratizing access to scRNA-150

seq data analysis. By enabling a marker-driven, subset-based strategy that can be implemented with151

familiar tools and frameworks, our pipeline reduces the barrier to entry for researchers without extensive152
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computational expertise. This approach allows high-resolution, cell-specific analyses without requiring153

mastery of complex or specialized software environments.154

Furthermore, the dimensionality reduction achieved through this method facilitates more intuitive data155

visualization and interpretation. Researchers can generate plots and visual summaries of their datasets156

with greater ease, enhancing both exploratory and confirmatory analyses.157

Moreover, Seurat remains one of the most widely adopted toolkits for scRNA-Seq analysis and provides158

a highly modular framework encompassing normalization, scaling, dimensionality reduction, clustering,159

and differential expression testing [13]. However, it relies heavily on global heuristics - such as minimum160

feature expression thresholds (often 10–20% of cells) and dispersion-based filtering - to reduce noise and161

improve statistical power. While effective for broad population-level analyses, these thresholds risk exclude162

transcriptionally relevant genes that are highly specific to rare cell types or transient activation states.163

The biological significance of circumventing such thresholds becomes particularly evident when considering164

cell types characterized by dynamic transcriptional states. Macrophages, for instance, are known for their165

phenotypic flexibility and context-driven transcriptomic plasticity in response to microenvironmental166

stimuli [29, 7]. Similarly, dendritic cells, regulatory T lymphocytes, and astrocytes - cells that often play167

specialized roles in immune surveillance and neural regulation - exhibit context-dependent transcriptional168

programs that may not reach detection thresholds in full-tissue datasets. The enhanced granularity of169

the proposed methodology allows for a more faithful representation of these subtle transcriptional shifts,170

enabling finer dissection of cellular heterogeneity. A compelling illustration of this analytical advantage is171

provided in Figure 3, which presents a scatterplot comparing the expression frequency (pct.1) of genes172

shared between the global dataset (encompassing all cell types) versus a macrophage-specific subset. The173

x-axis represents the proportion of all cells in which a given gene is expressed, while the y-axis indicates174

the proportion of macrophages expressing the same gene. A pronounced cluster of points emerges in the175

upper-left quadrant – specifically, genes expressed in over 90–100% of macrophages but in fewer than 20%176

of all cells.177

This region of the plot provides strong evidence that conventional filtering strategies (as implemented178

in Seurat’s standard pipeline) would likely discard these genes due to their low prevalence across the179

total cell population, despite their clear biological relevance in a specific subpopulation. Since Seurat180

often applies default cutoffs that exclude genes not detected in a minimum fraction of all cells (e.g.,181

min.pct = 0.1 or min.pct = 0.2 in differential expression tests), this creates a systematic bias against182

cell-type-restricted genes. The approach presented here overcomes this limitation by evaluating gene183

prevalence in a cell-type-aware manner, thereby preserving important features that are masked in global184

analyses.185

Finally, our approach enabled the development of streamlined, sample-specific analytical scripts. By186

tailoring the computational logic to each subset of interest, we avoided the pitfalls of overly generalized187

pipelines that often lead to data loss or misclassification. As a consequence, we observed a likely reduction188

in total processing time, encompassing code development, testing, and final data analysis. This reduction189

is primarily due to the fact that the bioinformatician is no longer required to engineer complex scripts190

to handle large, heterogeneous datasets—datasets that, under our strategy, are preemptively filtered to191

retain only biologically relevant signals.192

4 Discussion193

This study introduces a statistically optimized and computationally efficient methodology for the analysis194

of single-cell RNA sequencing (scRNA-Seq) data. The principal objective of this approach is to strike195

a balance between analytical robustness and reduced computational burden, thereby enabling high-196

resolution transcriptomic analyses even in environments lacking advanced computational infrastructure.197
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Figure 3: Scatterplot comparing gene expression percentages (pct.1 ) between all cells and macrophages
for genes shared across both datasets. The dashed diagonal line represents parity in expression levels
across conditions. Genes above the line are more highly expressed in macrophages.

By minimizing the reliance on complex processing pipelines or high-performance computing clusters,198

the method seeks to democratize access to state-of-the-art single-cell data interpretation across diverse199

research settings.200

When applied to the selected dataset, the proposed methodology demonstrated a consistent and201

substantial improvement in the identification of marker genes, yielding an average increase of approxi-202

mately 26.89% compared to traditional workflows implemented in Seurat [21, 1]. This enhancement is203

primarily attributed to the algorithm’s improved sensitivity in detecting subtle yet biologically meaningful204

transcriptional signatures, particularly within rare or transcriptionally plastic cell populations that are205

often underrepresented or masked by global thresholds in canonical pipelines– such as macrophage-specific206

genes.207

Beyond its analytical strengths, the methodology also offers significant practical and economic benefits.208

By allowing for the extraction of comprehensive transcriptomic profiles from a single sequencing run,209

regardless of cell-type abundance, it eliminates the necessity for multiple targeted sequencing efforts. This210

is particularly advantageous in the context of large-scale studies or longitudinal projects constrained by211

financial or logistical limitations. The approach thus enhances the scalability of scRNA-Seq experiments212

while simultaneously promoting greater reproducibility and data comparability across experiments.213

The results obtained in this study not only validate the methodological framework but also underscore its214

potential for further refinement and expansion. Future directions may include algorithmic parallelization215

to facilitate more efficient handling of ultra-large datasets, as well as the integration of GPU-based216

acceleration to optimize runtime performance.217
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Furthermore, the methodology supports the intelligent pre-filtering of cell populations not directly218

relevant to the primary research question. By enabling the exclusion of biologically irrelevant subsets prior219

to full-scale analysis, the method enhances both computational efficiency and interpretative clarity. This220

targeted data reduction strategy is particularly beneficial in studies with specific cell-type foci, allowing221

researchers to allocate resources more effectively and draw more precise biological inferences.222

In sum, the methodology presented here represents a significant advancement in the field of single-cell223

transcriptomics, offering a powerful combination of analytical sensitivity, computational efficiency, and224

practical applicability. When used in conjunction or as a complement to established platforms like Seurat,225

it has the potential to elevate the resolution, scalability, and biological interpretability of scRNA-Seq226

studies.227

5 Conclusion228

This study proposed and validated an alternative approach for the analysis of scRNA-seq data, aiming to229

reduce computational complexity, enhance analytical sensitivity, and preserve the biological integrity of230

the dataset. The methodology is centered on CLR normalization, followed by a marker-driven subsetting231

process that isolates specific cellular populations prior to the application of canonical analysis pipelines.232

The results demonstrated that this strategy enables the identification of a significantly higher number233

of marker genes compared to conventional workflows, while also capturing intermediate transcriptional234

states that are often overlooked. The observed issue of signal shadowing—stemming from limitations235

in floating-point precision after normalization—highlights the importance of early intervention in the236

analytical pipeline to prevent critical information loss.237

Additionally, the proposed workflow offers advantages in terms of cost-effectiveness and operational238

feasibility, allowing the analysis of entire tissues from a single sequencing run. This reduces the need239

for high-performance computational infrastructure and lowers experimental costs, making the approach240

especially suitable for resource-constrained environments or large-scale studies.241

In conclusion, the presented strategy represents a viable, scalable, and scientifically robust alternative242

for the investigation of dynamic cellular populations, particularly in contexts characterized by high cellular243

heterogeneity. Future developments may focus on optimizing the algorithm for parallel processing or GPU244

acceleration, further extending its applicability to large and complex datasets.245
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